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A B S T R A C T   

Smart toilet provides a feasible platform for the long-term analysis of person’s health. Common solutions for 
identification are based on camera or radio-frequency identification (RFID) technologies, but it is doubted for 
privacy issues. Here, we demonstrate an artificial intelligence of toilet (AI-toilet) based on a triboelectric pressure 
sensor array offering a more private approach with low cost and easily deployable software. The pressure sensor 
array attached on the toilet seat is composed of 10 textile-based triboelectric sensors, which can leverage the 
different pressure distribution of individual users’ seating manner to get the biometric information. 6 users can 
be correctly identified with more than 90% accuracy using deep learning. The signals from pressure sensors also 
can be used for recording the seating time on the toilet. The system integrates a camera sensor to analyze the 
simulated urine by comparing with urine chart and classify the types and quantities of objects using deep 
learning. All information including two-factor user identification and entire seating time using pressure sensor 
array, and data from the urinalysis and stool analysis were automatically transferred to a cloud system and were 
further shown in user’s mobile devices for better tracking their health status.   

1. Introduction 

Recent advances in various sensor technologies have enabled cost- 
effective approaches for wireless network connectivity between 
various sensors and processors, which lead to visible progress in the 
Internet of Things (IoT) [1–5]. IoT, which consists of a large number of 
devices connected to the internet, is considered a promising technology 
for the consumer electronics market [6–8]. Therefore, with the devel-
opment of 5G and IoT, smart homes are playing an increasingly 
important role in human life [9–12]. The eventual realization of smart 
home requires integrating considerable sensors with diversified func-
tionalities distributed around the house to form a home network 
monitoring and managing the house environment [13–16]. In addition, 
current precision medicine is still mainly limited to disease treatment, 
rather than prevention and early detection. In this regard, smart home 
integrated with various sensors shows great potential in relevant 

healthcare applications [17–20]. The future smart home should achieve 
continuous health monitoring diagnostic information including various 
informative molecules, such as breath [21], sweat [22–24], urine [25, 
26], and stool [27,28], all of which are complex by-products of human 
systems, activities, and external environments. By leveraging various 
necessary sensors, smart home can provide valuable information for the 
health condition of individuals from these excreted matters [29–32]. 
Therefore, smart toilet could be the most effective platform for contin-
uous health monitoring and valuable clinical information acquisition by 
analysing human excrement in smart home [33]. 

In the past few decades, several industrial manufacturers have 
attempted to build consumer-grade smart toilets. For an example, a 
Japanese company designed a smart toilet product [34], in which the 
main measurements are simple health status data, such as urine tem-
perature, diet, body fat and weight, while these data are rarely available 
for clinical information. Unfortunately, its price is 6100 USD per set, 
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which may not be affordable for ordinary households. In addition, other 
teams have introduced similar ideas and inventions for the realization of 
smart toilets in various forms [35–37]. These traditional smart toilets 
are based on facial recognition by camera sensor or RFID fingerprint 
recognition to record the individual health status. However, most of the 
toilets are placed in the bathroom, hence the recognition methods based 
on image sensors may cause privacy concerns for most users. The RFID 
fingerprint methods also need to consider the data security since fin-
gerprints are commonly used as secure payment approach. Recently, 
there is another system which uses fingerprinting and anal creases 
(named as analprint) as biometric identifiers to securely associate the 
collected data with the user’s identity [38]. Although this method can 
effectively protect the individual’s biometrics information, it cannot be 
accepted by the majority of users. Moreover, even if this type of smart 
toilet integrates RFID for biometric identification, it usually also re-
quires a pressure sensor as a switch to trigger the system and record the 
seating time and defecation time. Therefore, directly using the pressure 
sensor array for biometric identification can provide a better solution for 
user comfort and convenience [39–43]. In addition, method based on 
pressure sensor array can also record more comprehensive biometric 
information of the user seating on the toilet. 

There have been a lot of biometric identification approaches through 
pressure sensor array, but most of them are based on piezoelectric sen-
sors, capacitive sensors and resistive sensors [44–47]. Since most of 
these sensors are rigidly inflexible and unwashable, they are not suitable 
for placing on the toilet seat. There are several research developments of 
smart textiles aimed to be not only more comfortable but also multi-
functional [48–51]. Benefiting from the particular advantages of various 
choices of materials, easy fabrication, self-power genenration, and low 
cost, the triboelectric nanogenerator (TENG) gradually becomes an 
optimal option based on textile format for sensors and energy harvesters 
[52–59]. Textile-based TENG (T-TENG) exhibits outstanding ability of 
structural retention and fatigue resistance during washing [60,61]. In 
addition, TENG has made a lot of research progress in various applica-
tions, including self-powered pressure sensor and human− machine 
interface (HMI) for IoT applications [62–70], and HMIs for robotic 
control and virtual/augmented reality (VR/AR) interactions [71–76]. 
However, the pressure sensor array based on triboelectric has not been 
used to achieve biometric identification because TENG is very suscep-
tible to environmental variations resulting in reduced recognition ac-
curacy. For decades, machine learning (ML) has provided an effective 
method to adaptively learn features from the collected raw signals. 
These features have achieved great results in image processing, speech 
recognition, human activity recognition, etc [77–80]. TENG signals are 
mainly generated as time series data with positive and negative peaks 
within the time of the whole motions. Therefore, advanced data analysis 
methods for triboelectric signals mainly use the AI algorithm based on 
the analysis of sequential data, such as CNN (convolutional neural 
network), RNN (recurrent neural network), LSTM (long short-term 
memory) and their combination [81–83]. There are some recognition 
tasks based on triboelectric sensor with the aids of deep learning, such as 
a smart glove for different hand gesture recognition using CNN [84], a 
smart keyboard for identification based on DBN (deep belief network) 
[85], and etc. Under the analysis of the DL (deep learning) algorithms, 
the basic characteristics of triboelectric sensor can be extracted, and the 
attention to unnecessary fluctuations such as signals changes in ampli-
tude caused by humidity will be reduced [86–88]. Therefore, using 
TENG pressure sensor together with DL methods for biometric identifi-
cation is desirable for the application of smart toilet, which can well 
protect the privacy of users while maintaining low cost and comfort. 

In this work, we demonstrate an AI-toilet system equipped with 
multiple functions for an integrated health monitoring system (IHMS). 
The AI-toilet composed of a triboelectric pressure sensor array for bio-
metrics identification and a commercial image sensor for healthcare 
monitoring. 10 textile-based triboelectric sensors with the aids of spacer 
and frustum structure on triboelectric layer can successfully extend the 

sensing range to detect the variation of pressure on toilet seat, offering a 
more private approach for identification in smart toilet with the ad-
vantages of low cost and easy fabrication. With the aids of DL, the bio-
metrics information from 6 users sitting on the toilet seat can be 
identified with more than 90% accuracy. In addition, the signals from 
pressure sensors also can record the sitting time on the toilet. The 
recognition of simulated 4 different categories of stools and 5 amounts of 
stools reach the accuracy of 97.50% and 91.15%, respectively. Finally, 
all information about user’s health status collected from the AI-toilet 
will be upload to server and further shown on user’s mobile devices 
for continuous health monitoring and the valuable clinical information 
acquisition. The AI-toilet is capable of processing multi-modal data from 
the collected data on the hardware side to the AI interpretation on the 
software side, and finally can be combined with IoT to realize the AIoT 
system based on smart home (Fig. 1). 

2. Results and discussion 

2.1. Design, sensing mechanism and characterization 

Our low-cost T-TENG sensors are created using a 3D printed mold to 
pattern the mm-scale frustum structure and a spacer on the silicone 
rubber surface (Fig. 2a; further details on characterization and prepa-
ration are provided in Fig. S1 and Experimental section). The T-TENG 
sensor contains four functional layers, including a nitrile thin film, a 
silicone rubber film, and two conductive textiles attached to the back of 
the two contact electrification layers for charge collection. Moreover, 
two non-conductive textile layers are used to seal the device on the outer 
surface. The working mechanism of the T-TENG sensor is contact- 
separation mode of TENG, where the pressure stimulus will induce 
charges to flow in the external circuit, and hence the mechanical energy 
can be transformed into electricity. There are a lot of works that prove 
adding a frustum structure to the surface of triboelectric layer of TENG 
will increase the sensing range [89–95]. But to better apply for the toilet 
seat, we design a T-TENG with a higher sensing range. Here we 
attempted three spacers with different heights (Fig. 2b). Although the 
output of the T-TENG sensor with spacer will decrease, the sensing range 
will correspondingly increase. When the height of spacer is 2 mm, the 
buffering effect for pressure is relatively small due to the low height, 
hence the output is reduced less, and the sensing range is hardly 
improved. However, when the spacer height is 5.5 mm, although the 
sensing range is increased to 300 kPa, its output is only half of that 
without the spacer. If the output is too low, the resolution of the sub-
sequent ADC sampling will be greatly disturbed. Therefore, we chose the 
T-TENG sensors with medium-height spacer. When the height of the 
spacer and frustum is 4 mm, the sensing range can be successfully 
expanded to more than 200 kPa. The detailed dimensions of T-TENG 
sensor with 4-mm spacer and frustum structure are shown in Fig. 2c. 
Without the specific illustration, the frustum-patterned sensor with 
4 mm height spacer is used for all the following testing and demon-
strations. As for the stretching stability, since the sensor is put under 
1000 N which undergoes negligible lateral strain but large normal 
pressure, the repetitive contact-separation process resembles the real 
situation quite well. To further verify durability and reproducibility, we 
measured the open circuit responses of the pressure sensor under 400 
kPa over 500 cycles (Fig. 2d). The open-circuit response of the pressure 
sensor was stable and regular, with an almost constant base voltage. 
These results show that the proposed T-TENG sensors can reliably collect 
seating signals as biometrics identification element applied for smart 
toilet system. 

2.2. Individual pressure distribution 

Because the proposed T-TENG has good stability and durability, we 
put ten T-TENG sensors on the toilet as a pressure sensor array to detect 
the different pressure distributions of different users when they sit on the 

Z. Zhang et al.                                                                                                                                                                                                                                   



Nano Energy 90 (2021) 106517

3

toilet, as shown in Figs. 3a and S2. In order to realize the further IoT 
application, we use a microcontroller unit (Arduino mega 2560) and a 
customized PCB to realize analogue to digital convert (ADC) function. 
The voltage value of T-TENG collected by this method will be converted 
into a value between (0 V, 5 V). Due to the existence of the voltage 
divider circuit, the zero value of the T-TENG signal will be set to around 
3.35 V. Hence the voltage range that can be detected is (− 3.35 V, 
1.65 V). When the user sits on the toilet seat, according to the contact- 
separation mechanism of TENG, eco-flex layer as a negative triboelec-
tric layer will get electrons, and the ADC will detect a negative voltage 
(Fig. 3b). When leaving the toilet seat, a positive voltage value will be 
correspondingly detected. Considering that the general composition of 
family members is six, hence we first consider the individual recognition 
under six people. Therefore, we selected 6 users (male: User 1, User 2, 
User 4, and User 6; female: User 3 and User 5) to sit on the toilet seat in a 
normal state and leave the toilet after keeping 10 s of stability. As shown 
in Fig. 3c, different users have different habits to sit on different posi-
tions and produce different pressures. For better visualizing the pressure 

distribution map, we take the peak value of each channel from the entire 
waveform generated during the sitting process of the user and compare 
it with the detectable maximum voltage value. The pressure distribution 
of almost all participants is mainly concentrated in Sensor 1, Sensor 2, 
Sensor 3, Sensor 6, Sensor 7 and Sensor 8, which indicates the main 
pressure distribution area for most people sitting on the toilet. In addi-
tion, the pressure map of two female participants User 3 and User 5 
shows that the position of Sensor 4, Sensor 5, Sensor 9 and Sensor 10 are 
almost completely unused. Besides, the habit of 6 users sitting on the 
toilet is quite different, causing each user have the different distribution 
of pressure when sitting on the toilet. Meanwhile, we collected data from 
six users 50 times for verifying the stability of seating signal from in-
dividuals. As shown in Fig. 3d, the 50 times sitting pressure distributions 
of User 6 are similar, and there is a relatively large difference compared 
to other users (Fig. S3). 

Fig. 1. The schematics of Artificial Intelligence of Toilet (AI-Toilet) using triboelectric pressure sensors and image sensor for integrated health monitoring system 
(IHMS) as an important component of smart home applications. 
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2.3. Biometrics identification 

The traditional triboelectric device analysis strategy is to manually 
extract shallow features from a single waveform, such as frequency, hold 
time, and peak gap, which cannot realize the recognition of complex 
features [96–98]. These features have subtle differences and are very 
susceptible to environmental changes. The impact of these methods will 
led to a reduction in recognition accuracy. Therefore, it is difficult to 
directly use the pressure sensor distribution map extracted before for 
biometric identification. Due to the high performance of DL on dealing 
with many types of data, DL has become a very popular subset of ML. 
Triboelectric signal is usually recorded as one-dimensional (1D) 
time-series or discrete data, hence AI algorithm provide a promising and 
feasible solution for analysis of the time-series data [99–102]. Compared 
with manually extracting features, various AI algorithms also have 
capability of saving human resources and performing various classifi-
cation problems more conveniently and concisely. Therefore, as shown 
in Fig. 4a, a three-layer 1D-CNN was then constructed for data feature 
extraction and automatic recognition to verify the sensing ability of the 
proposed AI-toilet system. The detailed parameters of the ML 

architecture can be found in experiment section. 
In addition to the previous 50 samples of each users are setting as 

training set, the new 10 data samples of each users are collected as test 
set. The data length for each channel is 150, so there are 10 channels ×
150 = 1500 features in total for each sample as the input of the 1D-CNN 
analytic. Firstly, the t-distributed stochastic neighbor embedding (t- 
SNE) algorithm as a nonlinear dimensionality reduction technique is 
well suited for embedding high-dimensional data for visualization in a 
low-dimensional space of two or three dimensions, which is successfully 
utilized to visualize the clustered results of the data set, as shown in 
Fig. 4b. To achieve better performance for classification, the whole data 
is firstly zero-centered and rescaled to [− 1, 1] before algorithm training. 
As shown in Fig. 4c, the 1D CNN actually achieve high test accuracy rate 
by accident that it is the only time to achieve the 97.41% accuracy on the 
test data. The training process of accuracy rate versus iteration time on 
the train set validation set and test set are shown in Fig. S4. The real-time 
demonstration of identification is shown in Video S1. For the time 
sequence signal, the RNN, LSTM and 1D CNN are the classical algorithm 
which is also tested. SVM, as a kind of strong classification algorithm, is 
also considered for comparing the performance of different algorithms. 

Fig. 2. (a) Schematic diagram of the textile-based triboelectric sensor (T-TENG). (b) The charge versus pressure curve of frustum-based T-TENG with spacer structure 
and without spacer structure under the height of 2 mm, 4 mm, and 5.5 mm. (c) The detailed dimensions of the 4 mm-frustum and spacers. (d) The stable performance 
of a T-TENG over 500 cycles under the load of 400 kPa. 
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The results of 2D CNN, RNN, LSTM, SVM, and 1D CNN has been shown 
in Table S1. It is clear that the 1D CNN can achieve the highest accuracy 
and the SVM and RNN can also obtain an acceptable generalization 
ability for six individual recognitions on 10 sensors. In order to obtain 
the influence of the number of triboelectric sensors and their positions 
on the accuracy of CNN, we test the performance of 1D CNN based on 

two sensors (3, 8), four sensors (1, 3, 6, 8), six sensors (1, 3, 5, 6, 8, 10), 
eight sensors (1, 2, 3, 5, 6, 7, 8, 10) and ten sensors (1, 2, 3, 4, 5, 6, 7, 8, 
9, 10) in Fig. 4d. It is worthy to mention that with the increase of sensor 
number, the generalization ability of all kinds of algorithms will in-
crease. In addition, increasing the number of sensors can benefit to 
improve algorithm performance that the learning speed can be 

Fig. 3. (a) Schematics of the data acquisition system to collect sensory information of sitting signal and stand signal. (b) The sensor signal from 10 T-TENG sensors 
after ADC. (c) The sitting signals of six different users and the converted pressure distribution maps. (d) The pressure distribution map of 50 sets of cushion signals 
collected from User 6. 
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expedited, and generalization ability will be enhanced. As shown in 
Fig. S5, the classification results of 10 people can reach the accuracy of 
94.55%. In the future, if more individual is required to be recognized, 
applying more triboelectric sensors for improving performance is 
reasonable. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106517. 

2.4. Image recognition 

In our AI-toilet system, the function of urine and stool state evalua-
tion is achieved by analysis the captured photo image. The system 
graphical is illustrated in the Fig. 5a. Based on the image sensor 
embedded on an AIoT module (MaixDuino board), the images inside the 
toilet can be captured for ulterior analysis. The collected images will be 
directly transmitted to the microprocessors where the trained machine 
learning algorithms have been recorded on. Based on the fitted algo-
rithm and transmitted image, the AIoT module will directly generate the 

Fig. 4. (a) Schematics of the process and parameters for constructing the 1D CNN structure. (b) t-SNE plot from our sitting pose dataset recorded by the pressure 
sensor array. (c) Confusion map of the prediction with the sitting signals of 6 participants. (d) Schematic diagram of the sensor distribution and accuracy rate of 
different numbers of sensors. 
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output result, which means all the image process have been integrated 
into a single chip. Firstly, the urine color detection is achieved based on 
lab color space (LAB). Different color has different threshold of LAB 
value, which is composed of many pixels and each pixel has its certain 
LAB value. By estimating and comparing the number of pixels in the 
certain LAB range, it is possible to obtain the main color components of 

the image. The image from the toilet will be gathered and transmitted 
into AIoT module where the number of pixels of each color is calculated. 
In order to simulate the urine chat which can recognize the preliminary 
health status through define different fixed color, here six different 
colors are selected for the simulation of urinalysis in Fig. 5b. As shown in 
Fig. 5c, the LAB range of ‘yellow’ is considered as (75, 91, − 12, 8, 46, 

Fig. 5. (a) Schematic diagram of commercial image sensor. (b) Common urine chat and simulated urine diagrams used in experiments. (c) The designated color area 
map obtained by setting the threshold of CIELAB. (d) Layout of used deep CNN structure for classification of stool states. (e) Simulated stool states of four toilets. (f) t- 
SNE visualization of the last hidden-layer representations in the CNN for four stool classes. (g) The confusion map for CNN outcome of 4 simulated stool states. (h) A 
schematic of the simulated stool taxonomy and number. (i) The t-SNE visualization of the last hidden-layer representations in the CNN for 5 types of constipation 
stool. (j) The confusion map for CNN outcome of 5 simulated constipation stool states. 
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83), which means: (minimum L, maximum L, minimum A, maximum A, 
minimum B, maximum B). It means that the pictures captured by the 
camera will be divided according to the interval of the three set values of 
LAB, the pixels in the interval are white, and the others are black. 
Similarly, as shown in Fig. S6, the LAB range of ‘white’ is considered as 
(90, 94, − 3, 6, − 13, 3), the LAB range of ‘lighter yellow’ is considered as 
(83, 92, − 15, − 1, 4, 32), the LAB range of ‘light yellow’ is considered as 
(83, 92, − 15, − 3, 32, 48), the LAB range of ‘light orange’ is considered 
as (77, 88, 1, 16, 17, 37) and the LAB range of ‘orange’ is considered as 
(58, 78, 21, 33, 29, 43), respectively. Since the toilet itself is white, it is 
necessary to subtract a specific value from the number of white pixels to 
ensure that the recorded number of white pixels is only the area at the 
middle area which we are concerned about. In an addition, when the 

number of pixels of all colors is less than a threshold value, it will be 
determined as a new kind of color represents the image and output result 
as ‘undefined color’. 

Image sensor also can be used to achieve the function of stool 
recognition. Based on the characteristics of each category, three cate-
gories of excreta based on other succedaneum are achieved. Here we 
used baked beans in tomato sauce to simulate the diarrhea start of stool, 
and bananas of different sizes to simulate the normal state and con-
stipation state of stool, as shown in Fig. 5e. CNN has always been 
considered to have a strong advantage in image processing. As shown in 
Fig. 5d, the utilized CNN structure in AI-toilet includes 2 convolutional 
layers, 1 max pooling layer and 1 fully connected layer. The output of 
CNN is four which corresponding to the categories of four different 

Fig. 6. (a) Schematic of the whole functions of IHMS, including urine detection, type and number recognition of stool state, seating time and defecation time 
recording, user identification and IoT application. (b) An example graph of image sensor detecting the results of simulated urine. When the seating signal is triggered, 
the image sensor turns on CNN for stool recognition. (c) The probability of the first custom CNN to judge the type of tool. (d) If the toilet status is constipation, then 
the images are introduced into the second custom CNN to determine their number. (e) The seating signal is also collected for identification. (f) All information will be 
uploaded to the cloud through the PC, and then transmitted to the user’s mobile phone through the cloud. 
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states. For each type of data set, the data has been separated into 
training set (80%) and validation set (20%) for algorithm training. The 
training data is used to verify whether algorithm is underfitting and the 
validation data is applied to check whether it is overfitting. Finally, the 
accuracy of CNN is 97.50% and the confusion map is shown in Fig. 5g, 
which also shows that the difficulties of algorithm mainly focus on the 
recognizing of normal and constipation. Image recognition is usually 
affected by the dark environment, here we also proposed data 
augmentation methods to improve the performance of CNN, as shown in 
Fig. S7. There are six kinds of data set to verify the performance of data 
augmentation technology. As shown in Table S2, position change can 
increase the correct rate to 83.82%. The position change operation will 
be a better choice as it almost does not lose any information or add 
disturbing information. As illustrated in Fig. 5h, when the constipation 
condition is appeared, the image will be transmitted to another CNN 
algorithm to detect the number of this category. As elaborated in the 
Fig. 5i, t-SNE visualizes the two features from five different classes for 
number recognition. The confusion matrix of test data is illustrated in 
the Fig. 5i, which can get the accuracy of 91.15%. The class four and 
class five are easy to be confounded due to the overlap of increasing 
objects. 

2.5. Integrated AIoT system 

After integrating the above functions, the AI-toilet based on image 
sensor and T-TENG can then realize the AIoT application on smart home, 
as shown in Fig. 6a and Video S2. AI-toilet will perform simple color 
recognition first and then compare with the urine color chart to get the 
user’s water shortage and preliminary health status. As shown in Fig. 6b, 
the urine state is simulated by adding liquid to the toilet. It can be seen 
that the simulated color changed from color0 (undefined color) to color1 
(white), and eventually became color4 (yellow) as the juice concentra-
tion increased. After stopping changing the color, the output result will 
remain at color4. When the pressure sensor receives a trigger signal, the 
image recognition function is turned on. The neural network for excre-
ment classification that has been burned on AIoT module will be acti-
vated first. When the stimulated defecation process starts by placing a 
small banana in the AI-toilet, the CNN will differentiate it as the stool 
state. At the same time, the LAB-based color recognition function is 
turned off. As shown in Fig. 6c and d, between 80 and 100 s, the prob-
ability of judging as clean is greater than 80% on average, so it can be 
judged that the banana has not been placed during this period. After 
100 s, the system detects the occurrence of small bananas (i.e., simu-
lated constipation) and turns on the neural network for identifying the 
number of objects at the same time. As the number of small bananas 
increases, the result of object classification gradually approaches 100%, 
and the corresponding probability distribution will be obtained for the 
number detection. After all the small bananas are finally removed, when 
the probability of clean in the result of object recognition is also the 
highest, the neural network for quantitative recognition will not be 
activated again. The period from the first detection of the appearance of 
the small banana (t1) to the new detection of clean (t2) can be regarded 
as the simulated defence time. The pressure sensor signal can be 
detected as trigger signal to record the beginning of seating (t0). As the T- 
TENG based pressure sensor detects the departure signal (tf), the total 
seating time can be obtained through tf-t0. At the same time, all data 
during this period, including urine color, excrement image recognition, 
excrement quantity and the corresponding time will be uploaded to the 
local PC. On the other hand, when the pressure sensor signal is detected 
at the beginning, the data of 10 pressure sensors will be also used to 
obtain the predicted user’s identity information through the 1DCNN. In 
the end, all information will be uploaded to the cloud through the PC, 
and then transmitted to the user’s mobile phone through the cloud. 
Therefore, it not only protects the privacy of users, but also allows family 
members to better pay attention to the health of elder or children. 
Therefore, the proposed smart toilet will obtain various types of health 

information after interpreting the state and habits of the user, thereby 
realizing disease detection, whose intelligence and versatility will 
become one of the final solutions of smart toilets in smart home. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106517. 

3. Conclusion 

In general, an AI-toilet for IHMS based on a triboelectric pressure 
sensor array for biometrics identification and a commercial image 
sensor for urinalysis and stool analysis is developed. Leveraging the 
frustum structure on eco-flex layer and spacer between two triboelectric 
layers, the sensing range successfully extends up to above 200 kPa, 
which is suitable for detection of seating pressure. 10 textile-based 
triboelectric sensors as a pressure sensor array are attached on the 
toilet seat, offering a more private approach with the advantages of low 
cost and easy fabrication. With the aids of DL, the biometrics informa-
tion from 6 users seating on the toilet seat can be identified with more 
than 90% accuracy. In addition, the signals from pressure sensors also 
can record the seating time of toilet. We used an image sensor of an AIoT 
module to record the dynamic variation of color within the toilet, and to 
realize the urinalysis. CNNs have been applied successfully in visual 
recognition tasks such as image classification. Therefore, we design two 
CNNs for the recognition of simulated 4 different types of stools and 
stools’ amounts with accuracy of 97% and 91%, respectively. Finally, all 
information about user’s health status collected from smart toilet system 
will be uploaded to server and further shown on user’s mobile devices 
for continuous health monitoring and the valuable clinical information. 

4. Experimental section 

4.1. Fabrication of the triboelectric textile sensor 

The triboelectric textile sensor contains two layers: a positive charge 
generation layer, and a negative charge generation layer. Firstly, the 
conductive textile is cut into the desired size and shape, which is made of 
metalized fabric (polyester Cu) coated with an adhesive. To fabricate the 
positive charge generation layer, a thin nitrile film is attached to one 
side of a conductive textile. Another conductive textile is coated with 
silicone rubber film on the one side as well (Fig. S1). The coating process 
was firstly dispensing required amounts of Parts A and B of the Eco-
FlexTM 00–30 into a mixing container (1 A:1B by volume or weight), 
followed by mixing the blend thoroughly for 3 min, and then the mixed 
solution was poured into a 3D-printed mold followed by 20-minute 
baking at 40 ºC for curing. Lastly, the silicone rubber coated textile 
was stitched to the nitrile coated textile with two non-conductive textiles 
attached to the outer sides for encapsulation. 

4.2. Experiment measurement and characterization 

The signal outputs in the characterization of the textile-based TENG 
sensor were measured by an oscilloscope (DSO-X3034A, Agilent) using a 
high impedance probe of 100 MΩ. Calibrations of output voltage against 
force for triboelectric sensors were conducted by force gauge (Mecme-
sin, MultiTest 2.5-i) with the speed of 600 mm/min. The open-circuit 
voltages, transferred charges, and short-circuit currents were 
measured by an electrometer (Model 6514, Keithley), and the signals 
were displayed and recorded by an oscilloscope (DSO-X3034A, Agilent). 

4.3. Data acquisition and data analysis 

Analog voltage signals generated from T-TENG are collected and 
processed by the hardware circuit consisting of a conditioner print cir-
cuit board (PCB) and an MCU (Arduino Mega 2560). After the mea-
surements, MATLAB®2019a was used for data analysis. The 1D CNN 
models were developed in Python with Keras and Tensorflow backend. 
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The proposed 1D CNN architecture includes three convolutional layers 
with 16, 32, and 64 filters and a kernel size of 5 × 5, each of them fol-
lowed by a max-pooling layer. Image analysis based on AIoT module 
(Sipeed Maixduino) based on kendryte K210 risc-v AI processor, Ardu-
ino uno and on-board esp32 WIFI, Bluetooth module and M1 AI module. 
MaixPy IDE 0.2.5 help to use the micro-python to realize WIFI connec-
tion, computer vision and machine learning on the MaixDuino board. 
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